Перевод: с русского на английский

с английского на русский

(потребляемого) тока

  • 1 ограничитель потребляемого тока

    Универсальный русско-английский словарь > ограничитель потребляемого тока

  • 2 проверка потребляемого тока

    Engineering: current draw test

    Универсальный русско-английский словарь > проверка потребляемого тока

  • 3 измерение тока, потребляемого через каждую розетку

    1. measurement of current per outlet

     

    измерение тока, потребляемого через каждую розетку
    -
    [Интент]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > измерение тока, потребляемого через каждую розетку

  • 4 ток намагничивания трансформатора тока

    1. exciting current

     

    ток намагничивания трансформатора тока
    Действующее значение тока, потребляемого вторичной обмоткой трансформатора тока, когда ко вторичным зажимам подведено синусоидальное напряжение номинальной частоты, причем первичная обмотка и все остальные обмотки разомкнуты.
    [ ГОСТ 18685-73]

    EN

    exciting current
    the r.m.s. value of the current taken by the secondary winding of a current transformer, when a sinusoidal voltage of rated frequency is applied to the secondary terminals, the primary and any other windings being open-circuited
    [IEV number 321-02-32]

    FR

    courant d'excitation
    valeur efficace du courant qui traverse l'enroulement secondaire d'un transformateur de courant, lorsqu'on applique entre les bornes secondaires une tension sinusoïdale à la fréquence assignée, l'enroulement primaire et tous les autres enroulements étant à circuit ouvert
    [IEV number 321-02-32]

    Недопустимые, нерекомендуемые

    EN

    DE

    FR

    Русско-английский словарь нормативно-технической терминологии > ток намагничивания трансформатора тока

  • 5 измерение тока, потребляемого стартёром, при прокручивании неработающего двигателя

    Makarov: stall test

    Универсальный русско-английский словарь > измерение тока, потребляемого стартёром, при прокручивании неработающего двигателя

  • 6 нелинейная нагрузка

    1. non-linear receiver
    2. non-linear load
    3. distorting load

     

    нелинейная нагрузка
    Нагрузка, в которой ток и напряжение связаны между собой нелинейным законом.

    EN

    non-linear load
    load where the parameter Z (load impedance) is no longer a constant but is a variable dependent on other parameters, such as voltage or time
    [IEC 62310-3, ed. 1.0 (2008-06)]

    FR

    charge non linéaire
    charge où le paramètre Z (impédance de charge) n’est plus une constante mais une variable dépendant d’autres paramètres, comme la tension ou le temps
    [IEC 62310-3, ed. 1.0 (2008-06)]

    На рисунке показаны осциллограммы напряжения и тока, протекающего через импульсный источник питания компьютера. Видно, что при синусоидальном питающем напряжении форма кривой потребляемого тока существенно отличается от синусоидальной (т. е. зависимость тока от напряжения является нелинейной).
    Компьютер - типичный пример нелинейной нагрузки.

    Тематики

    Классификация

    >>>

    EN

    FR

    Русско-английский словарь нормативно-технической терминологии > нелинейная нагрузка

  • 7 индикатор


    indicator
    - (устройство ввода и индикации, уви) — data display
    ввод (на наборном пуи сист. омега) — nons enter display
    -, верхний (уви) — upper data display (of c/du)
    - вибрации двигателяengine vibration indicator (eng vib ind)
    - висения и малых скоростейhovering and low-speed indic ato r
    - влажностиhumidity indicator
    - влажности, cипикагелевый — silica gel humidity indicator
    - (радио) дальномера (рис. 69) — dме indicator
    - дистанционного авиагоризонта агд — attitude indicator /display/
    в качестве индикатора служат шкалы крена и тангажа прибора кип.
    - запаса кислородаoxygen quantity indicator (oxygen qty)
    - кислорода (ик)oxygen flow indicator
    - кислорода, шариковый — ball oxygen flow indicator
    - кругового обзора (ико)plan position indicator (pp)
    иko (катодно-лучевой экран) спужит дпя плановой индикации, местоположения объектов отражающих радиолокационные сигналы. — plan position indicator is cathoderay tube display indigating in plan the positions of radar echo producing objects.
    - крутящего момента (икм)torquemeter indicator
    - курсовых угловbearing indicator

    the indicator displays the bearing on a dial calibrated on 5° intervals.
    - курсовых углов (ику,cистемы "kypc-mп и apk) (рис. 69) — radio magnetic indicator (rmi), (adf) bearing and heading indicator (bhi)
    - курсовых углов, основной дублирующий — alternative main bearing indicater
    - курсовых углов со счетчиком дальности — bearing, distance and heading indicator (bdhi)
    -,левый (на пуи или уви) — left (-hand) data display
    -,моторный, трехстрелочный — three-pointer engine gage unit
    - навигационной обстановки (автоматический навигационный планшет) — moving map ground position indicator /display/. shows the aircraft position and heading at all times during a flight.
    - навигационной обстановки (с проекцией на просвет 35 мм пленки) — map display unit (with display provided by back projection of 35 mm film image)
    -, навигационный (ни) — ground-position indicator
    прибор для автоматической индикации местоположения ла, определенного методом счисления пути с учетом заданных скорости и направления ветра. — an instrument which determines and displays automatically the dead-reckoning position of an aircraft, gonerally from а combination of air position and preset wind data.
    - нагрузки (амперметр) nepеменного (постоянного) токаас (dc) loadmeter
    - неисправностиtrouble-location indicator
    -, нижний (на пуи или уви0 — lower data displayо
    - номеров ппм (участка пути) — waypoint number display, wpt display
    -, нулевой (нуль-индикатор автопилота) — trim indicator
    - оповещения экипажа (о возможности столкновения в воздухе)pilot (collision) warning indicator (pwi)
    -, основной — main indicator
    -, основной дублирующий — alternative main indicator

    shows which wpt coordinates are displayed on lh and rh displays.
    - оставшегося пути и отклонения от пинии пути (рис. 82) — along/across track display indicater /unit/ (to display distance to go and across track displacement)
    - от/на (на наборном попе пуи сист. омега) — fr-to (waypoint) display
    - отсчета курсов, неподвижный (индекс курса) — lubber line
    - ошибок контрольных сумм памяти вычислителяmemory checksum error annunciator
    - полного (правильного) соединения эп. разъема, визуальный — visual (connector) full engagement indicator
    - перегрузок (ип, акселерометр) — accelerometer
    - положения выключателя, световой (щелевого подсвета) — flowbar. with switch set on the switch flowbar is illuminated.
    - потребляемого токаloadmeter
    -, правый (пуи или уви) — right (-hand) data display
    - признака готовности (системы)(system) operational status indicator
    - проекционно-совмещенный (директорный)superimpose-projection indicator
    -, профильный — vertical-scale indicator
    -, радиолокационный (рис. 69) — radar indicator
    -, радиомагнитный (рми) указатель курса и пеленгов радиостанций (рис. 69). — radiomagnetic indicator (rmi) an instrument which exhibits both the heading of an aircraft and its bearing to and from an omnirange station.
    - разряда огнетушителяfire-extinguisher discharge indicator
    - разряда огнетушителя, мембранный — fire-extinguisher discharge bursting disc indicator
    - расстояния до пункта назначения и отклонения от курса — along/across track display indicator /unit/
    -, рычажный (измерительный инструмент) — orthotest gauge /gage/
    - с вертикальной шкалой (профильный)vertical scale indicator
    - самолетного дальномера (исд-1)dme indicator
    - самолетной дальностиdme indicator
    - саморазряда огнетушителяfire-extinguisher discharge indicator
    - саморазряда огнетушителя, вызванного температурным расширением заряда — fire-extinguisher thermal relief indicator
    - саморазряда огнетушителя, мембранный — fire-extinguisher discharge bursting disc indicator
    - сигнализации состояния системы ("омега") индикатор имеет 5 сигнапьных табло для указания состояния элементов системы, которые могут повлиять на точность работы навигационной системы. — status indicator the indicator has 5 annunciator lights which illuminate to call attention to equipment conditions which may affect navigation accuracy.
    - системы топливомерно-расходомерной (истр)fuel quantity-flow indicator
    - согласования гпк и ид (в режиме магнитной коррекции) — alignment sync indicator indicates sync condition of gyro and flux valve (in mag mode).
    - состояния cma- (771) (сист. омега) — ons status annunciators. positions:

    sys - system failure warning lamp

    dr - dead reckoning mode

    amb - position ambiguity or memory checksum error

    syn - omega synchronization status

    vlf - very low frequency relative mode of operation.
    - топпивомерно-расходной системы (истр)fuel quantity - flow indicator
    -, трехстрелочный — three-pointer indicator
    -, трехстрелочный моторный (рис. 69) — three-pointer engine gage unit
    - тяги (двигателя)thrust indicator
    гтд не имеет прибора, показывающего собственно тягу, тяга двигателя может быть определена no степени повышения давления в двигателе. — there is no engine instrument which indicates engine thrust directly but thrust can be determined using combined indications of altitude, mach number and epr.
    - тяги (указатель отношения давлений, уод) (рис. 69) — epr indicator, engine pressure ratio indicator
    - усилий (нуль-индикатор показывает величину и направление усилий на рм ап) — trim indicator displays when servo force is applied to control surface.
    - участка маршрута (на пуи сист. омега) — from/to waypoint display, fr то display

    displays from waypoint number and to waypoint number of leg being navigated.
    -, цифровой (общ. термин) — digital /numeric/ display
    -, цифровой — digital indicator (di)
    -, цифровой (на пуи системы омега) — numerical) display /readout/
    -, цифровой (левый, правый, на лун сист. омега) — (left-, right-hand) numerical) display
    -, цифровой, сдвоенный (показывающий расстояние до пункта и путевую скорость) — dual digital indicator (ddi) (to display distance to go and ground speed)
    - часового типа (для замера биений поверхности) (рис. 154) — dial test indicator (d.t.l.)
    -, электрический, моторный, трехстрепочный (эми-зр) — three-pointer engine gauge unit
    -, электронно-лучевой пилотожный — electronic flight instrument display (efid)
    на и. (указателе) — (read) on indicator
    на и. (табло) — in the display
    высвечиваться на и. (напр. 2-х цифровое значение этапа готовности) — data display shows (2-digit status number)

    Русско-английский сборник авиационно-технических терминов > индикатор

  • 8 инжектор PoE

    1. PoE injector

     

    инжектор PoE
    Устройство подачи питания в кабель по технологии PoE
    [Интент]

    Технология PoE не оказывает влияния на качество передачи данных. Для ее реализации используются свойства физического уровня Ethernet:

    C использованием высокочастотных трансформаторов на обоих концах линии с центральным отводом от обмоток постоянное напряжение питания подается на центральные отводы вторичных обмоток этих трансформаторов, и так же с центральных отводов снимается на приемной стороне. Использование центральных отводов сигнальных трансформаторов позволяет без взаимного влияния передавать питание по сигнальным парам, то есть передавать по одним и тем же проводникам и высокочастотные данные, и постоянное напряжение питания.
    Использование свободных пар для подачи питания. Современные кабельные сети Ethernet, соответствующие стандарту 100BASE-TX, состоят из четырех пар, две из которых не задействованы.

    Питающие устройства ( инжекторы; англ. power sourcing equipment, сокр. PSE) отличаются по способу подключения питания, при этом питаемые устройства (сплиттеры; англ. powered device, сокр. PD) являются универсальными. Питаемые устройства должны проектироваться с возможностью приема питания в любом варианте, в том числе и при изменении полярности (например, когда используется перекрестный кабель).

    Важным является то обстоятельство, что питающее устройство подает питание в кабель только в том случае, если подключаемое устройство является устройством питаемого типа. Таким образом, оборудование, не поддерживающее технологию PoE и случайно подключенное к питающему устройству, не будет выведено из строя[5]. Процедура подачи и отключения питания на кабель состоит из нескольких этапов.
    Определение подключения

    Этап определения подключения служит для определения, является ли подключенное на противоположном конце кабеля устройство питаемым (PD). На этом этапе питающее устройство (PSE) подает на кабель напряжение от 2,8 до 10 B и определяет параметры входного сопротивления подключаемого устройства. Для питаемого устройства это сопротивление составляет от 19 до 26,5 кОм с параллельно подключенным конденсатором ёмкостью от 0 до 150 нФ[6]. Только после проверки соответствия параметров входного сопротивления для питаемого устройства, питающее устройство переходит к следующему этапу, в противном случае питающее устройство повторно, через промежуток времени не менее 2 мс, пытается определить подключение.
    Классификация

    После этапа определения подключения, питающее устройство может дополнительно выполнять этап классификации, определяя диапазон мощностей, потребляемых питаемым устройством, чтобы затем контролировать эту мощность. Каждому питаемому устройству в зависимости от заявленной потребляемой мощности будет присвоен класс от 0 до 4. Минимальный диапазон мощностей имеет класс 0. Класс 4 зарезервирован стандартом для дальнейшего развития. Питающее устройство может снять напряжение с кабеля, если питаемое устройство стало потреблять мощность больше объявленной во время классификации. Классификация выполняется путём введения в кабель питающим устройством напряжения от 14,5 до 20,5 В и измерения тока в линии.
    Подача полного напряжения

    После прохождения этапов определения и классификации питающее устройство подает в кабель напряжение 48 В с фронтом нарастания не быстрее 400 мс. После подачи полного напряжения на питаемое устройство, питающее устройство осуществляет контроль его работы двумя способами:

    если питаемое устройство в течение 400 мс будет потреблять ток меньше 5 мА, то питающее устройство снимает питание с кабеля;
    питающее устройство подает в кабель напряжение 1,9—5,0 В с частотой 500 Гц и вычисляет входное сопротивление; если это сопротивление будет больше 1980 кОм в течение 400 мс, питающее устройство снимает питание с кабеля.

    Кроме того, питающее устройство непрерывно следит за током перегрузки. Если питаемое устройство будет потреблять ток более 400 мА в течение 75 мс, питающее устройство снимет питание с кабеля.
    Отключение

    Когда питающее устройство определяет, что питаемое устройство отключено от кабеля или произошла перегрузка потребляемого тока питаемым устройством, происходит снятие напряжение с кабеля за время не менее 500 мс.

    [ http://ru.wikipedia.org/wiki/Power_over_Ethernet]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > инжектор PoE

  • 9 управление электропитанием

    1. power management

     

    управление электропитанием
    -
    [Интент]


    Управление электропитанием ЦОД

    Автор: Жилкина Наталья
    Опубликовано 23 апреля 2009 года


    Источники бесперебойного питания, функционирующие в ЦОД, составляют важный элемент общей системы его энергообеспечения. Вписываясь в контур управления ЦОД, система мониторинга и управления ИБП становится ядром для реализации эксплуатационных функций.

    Три задачи

    Системы мониторинга, диагностики и управления питанием нагрузки решают три основные задачи: позволяют ИБП выполнять свои функции, оповещать персонал о происходящих с ними событиях и посылать команды для автоматического завершения работы защищаемого устройства.

    Мониторинг параметров ИБП предполагает отображение и протоколирование состояния устройства и всех событий, связанных с его изменением. Диагностика реализуется функциями самотестирования системы. Управляющие же функции предполагают активное вмешательство в логику работы устройства.

    Многие специалисты этого рынка, отмечая важность процедуры мониторинга, считают, что управление должно быть сведено к минимуму. «Функция управления ИБП тоже нужна, но скорее факультативно, — говорит Сергей Ермаков, технический директор компании Inelt и эксперт в области систем Chloride. — Я глубоко убежден, что решения об активном управляющем вмешательстве в работу систем защиты электропитания ответственной нагрузки должен принимать человек, а не автоматизированная система. Завершение работы современных мощных серверов, на которых функционируют ответственные приложения, — это, как правило, весьма длительный процесс. ИБП зачастую не способны обеспечивать необходимое для него время, не говоря уж о времени запуска какого-то сервиса». Функция же мониторинга позволяет предотвратить наступление нежелательного события — либо, если таковое произошло, проанализировать его причины, опираясь не на слова, а на запротоколированные данные, хранящиеся в памяти адаптера или файлах на рабочей станции мониторинга.

    Эту точку зрения поддерживает и Алексей Сарыгин, технический директор компании Radius Group: «Дистанционное управление мощных ИБП — это вопрос, к которому надо подходить чрезвычайно аккуратно. Если функции дистанционного мониторинга и диспетчеризации необходимы, то практика предоставления доступа персоналу к функциям дистанционного управления представляется радикально неверной. Доступность модулей управления извне потенциально несет в себе риск нарушения безопасности и категорически снижает надежность системы. Если существует физическая возможность дистанционно воздействовать на ИБП, на его параметры, отключение, снятие нагрузки, закрытие выходных тиристорных ключей или блокирование цепи байпаса, то это чревато потерей питания всего ЦОД».

    Практически на всех трехфазных ИБП предусмотрена кнопка E.P.O. (Emergency Power Off), дублер которой может быть выведен на пульт управления диспетчерской. Она обеспечивает аварийное дистанционное отключение блоков ИБП при наступлении аварийных событий. Это, пожалуй, единственная возможность обесточить нагрузку, питаемую от трехфазного аппарата, но реализуется она в исключительных случаях.

    Что же касается диагностики электропитания, то, как отмечает Юрий Копылов, технический директор московского офиса корпорации Eaton, в последнее время характерной тенденцией в управляющем программном обеспечении стал отказ от предоставления функций удаленного тестирования батарей даже системному администратору.

    — Адекватно сравнивать состояние батарей необходимо под нагрузкой, — говорит он, — сам тест запускать не чаще чем раз в два дня, а разряжать батареи надо при одном и том же токе и уровне нагрузки. К тому же процесс заряда — довольно долгий. Все это не идет батареям на пользу.

    Средства мониторинга

    Производители ИБП предоставляют, как правило, сразу несколько средств мониторинга и в некоторых случаях даже управления ИБП — все они основаны на трех основных методах.

    В первом случае устройство подключается напрямую через интерфейс RS-232 (Com-порт) к консоли администратора. Дальность такого подключения не превышает 15 метров, но может быть увеличена с помощью конверторов RS-232/485 и RS-485/232 на концах провода, связывающего ИБП с консолью администратора. Такой способ обеспечивает низкую скорость обмена информацией и пригоден лишь для топологии «точка — точка».

    Второй способ предполагает использование SNMP-адаптера — встроенной или внешней интерфейсной карты, позволяющей из любой точки локальной сети получить информацию об основных параметрах ИБП. В принципе, для доступа к ИБП через SNMP достаточно веб-браузера. Однако для большего комфорта производители оснащают свои системы более развитым графическим интерфейсом, обеспечивающим функции мониторинга и корректного завершения работы. На базе SNMP-протокола функционируют все основные системы мониторинга и управления ИБП, поставляемые штатно или опционально вместе с ИБП.

    Стандартные SNMP-адаптеры поддерживают подключение нескольких аналоговых или пороговых устройств — датчик температуры, движения, открытия двери и проч. Интеграция таких устройств в общую систему мониторинга крупного объекта (например, дата-центра) позволяет охватить огромное количество точек наблюдения и отразить эту информацию на экране диспетчера.

    Большое удобство предоставляет метод эксплуатационного удаленного контроля T.SERVICE, позволяющий отследить работу оборудования посредством телефонной линии (через модем GSM) или через Интернет (с помощью интерфейса Net Vision путем рассылки e-mail на электронный адрес потребителя). T.SERVICE обеспечивает диагностирование оборудования в режиме реального времени в течение 24 часов в сутки 365 дней в году. ИБП автоматически отправляет в центр технического обслуживания регулярные отчеты или отчеты при обнаружении неисправности. В зависимости от контролируемых параметров могут отправляться уведомления о неправильной эксплуатации (с пользователем связывается опытный специалист и рекомендует выполнить простые операции для предотвращения ухудшения рабочих характеристик оборудования) или о наличии отказа (пользователь информируется о состоянии устройства, а на место установки немедленно отправляется технический специалист).

    Профессиональное мнение

    Наталья Маркина, коммерческий директор представительства компании SOCOMEC

    Управляющее ПО фирмы SOCOMEC легко интегрируется в общий контур управления инженерной инфраструктурой ЦОД посредством разнообразных интерфейсов передачи данных ИБП. Установленное в аппаратной или ЦОД оборудование SOCOMEC может дистанционно обмениваться информацией о своих рабочих параметрах с системами централизованного управления и компьютерными сетями посредством сухих контактов, последовательных портов RS232, RS422, RS485, а также через интерфейс MODBUS TCP и GSS.

    Интерфейс GSS предназначен для коммуникации с генераторными установками и включает в себя 4 входа (внешние контакты) и 1 выход (60 В). Это позволяет программировать особые процедуры управления, Global Supply System, которые обеспечивают полную совместимость ИБП с генераторными установками.

    У компании Socomec имеется широкий выбор интерфейсов и коммуникационного программного обеспечения для установки диалога между ИБП и удаленными системами мониторинга промышленного и компьютерного оборудования. Такие опции связи, как панель дистанционного управления, интерфейс ADC (реконфигурируемые сухие контакты), обеспечивающий ввод и вывод данных при помощи сигналов сухих контактов, интерфейсы последовательной передачи данных RS232, RS422, RS485 по протоколам JBUS/MODBUS, PROFIBUS или DEVICENET, MODBUS TCP (JBUS/MODBUS-туннелирование), интерфейс NET VISION для локальной сети Ethernet, программное обеспечение TOP VISION для выполнения мониторинга с помощью рабочей станции Windows XP PRO — все это позволяет контролировать работу ИБП удобным для пользователя способом.

    Весь контроль управления ИБП, ДГУ, контроль окружающей среды сводится в единый диспетчерский пункт посредством протоколов JBUS/MODBUS.
     

    Индустриальный подход

    Третий метод основан на использовании высокоскоростной индустриальной интерфейсной шины: CANBus, JBus, MODBus, PROFIBus и проч. Некоторые модели ИБП поддерживают разновидность универсального smart-слота для установки как карточек SNMP, так и интерфейсной шины. Система мониторинга на базе индустриальной шины может быть интегрирована в уже существующую промышленную SCADA-систему контроля и получения данных либо создана как заказное решение на базе многофункциональных стандартных контроллеров с выходом на шину. Промышленная шина через шлюзы передает информацию на удаленный диспетчерский пункт или в систему управления зданием (Building Management System, BMS). В эту систему могут быть интегрированы и контроллеры, управляющие ИБП.

    Универсальные SCADA-системы поддерживают датчики и контроллеры широкого перечня производителей, но они недешевы и к тому же неудобны для внесения изменений. Но если подобная система уже функционирует на объекте, то интеграция в нее дополнительных ИБП не представляет труда.

    Сергей Ермаков, технический директор компании Inelt, считает, что применение универсальных систем управления на базе промышленных контроллеров нецелесообразно, если используется для мониторинга только ИБП и ДГУ. Один из практичных подходов — создание заказной системы, с удобной для заказчика графической оболочкой и необходимым уровнем детализации — от карты местности до поэтажного плана и погружения в мнемосхему компонентов ИБП.

    — ИБП может передавать одинаковое количество информации о своем состоянии и по прямому соединению, и по SNMP, и по Bus-шине, — говорит Сергей Ермаков. — Применение того или иного метода зависит от конкретной задачи и бюджета. Создав первоначально систему UPS Look для мониторинга ИБП, мы интегрировали в нее систему мониторинга ДГУ на основе SNMP-протокола, после чего по желанию одного из заказчиков конвертировали эту систему на промышленную шину Jbus. Новое ПО JSLook для мониторинга неограниченного количества ИБП и ДГУ по протоколу JBus является полнофункциональным средством мониторинга всей системы электроснабжения объекта.

    Профессиональное мение

    Денис Андреев, руководитель департамента ИБП компании Landata

    Практически все ИБП Eaton позволяют использовать коммуникационную Web-SNMP плату Connect UPS и датчик EMP (Environmental Monitoring Probe). Такой комплект позволяет в числе прочего осуществлять мониторинг температуры, влажности и состояния пары «сухих» контактов, к которым можно подключить внешние датчики.

    Решение Eaton Environmental Rack Monitor представляет собой аналог такой связки, но с существенно более широким функционалом. Внешне эта система мониторинга температуры, влажности и состояния «сухих» контактов выполнена в виде компактного устройства, которое занимает минимум места в шкафу или в помещении.

    Благодаря наличию у Eaton Environmental Rack Monitor (ERM) двух выходов датчики температуры или влажности можно разместить в разных точках стойки или помещения. Поскольку каждый из двух датчиков имеет еще по два сухих контакта, с них дополнительно можно принимать сигналы от датчиков задымления, утечки и проч. В центре обработки данных такая недорогая система ERM, состоящая из неограниченного количества датчиков, может транслировать информацию по протоколу SNMP в HTML-страницу и позволяет, не приобретая специального ПО, получить сводную таблицу измеряемых величин через веб-браузер.

    Проблему дефицита пространства и высокой плотности размещения оборудования в серверных и ЦОД решают системы распределения питания линейки Eaton eDPU, которые можно установить как внутри стойки, так и на группу стоек.

    Все модели этой линейки представляют четыре семейства: системы базового исполнения, системы с индикацией потребляемого тока, с мониторингом (локальным и удаленным, по сети) и управляемые, с возможностью мониторинга и управления электропитанием вплоть до каждой розетки. С помощью этих устройств можно компактным способом увеличить количество розеток в одной стойке, обеспечить контроль уровня тока и напряжения критичной нагрузки.

    Контроль уровня потребляемой мощности может осуществляться с высокой степенью детализации, вплоть до сервера, подключенного к конкретной розетке. Это позволяет выяснить, какой сервер перегревается, где вышел из строя вентилятор, блок питания и т. д. Программным образом можно запустить сервер, подключенный к розетке ePDU. Интеграция системы контроля ePDU в платформу управления Eaton находится в процессе реализации.

    Требование объекта

    Как поясняет Олег Письменский, в критичных объектах, таких как ЦОД, можно условно выделить две области контроля и управления. Первая, Grey Space, — это собственно здание и соответствующая система его энергообеспечения и энергораспределения. Вторая, White Space, — непосредственно машинный зал с его системами.

    Выбор системы управления энергообеспечением ЦОД определяется типом объекта, требуемым функционалом системы управления и отведенным на эти цели бюджетом. В большинстве случаев кратковременная задержка между наступлением события и получением информации о нем системой мониторинга по SNMP-протоколу допустима. Тем не менее в целом ряде случаев, если характеристики объекта подразумевают непрерывность его функционирования, объект является комплексным и содержит большое количество элементов, требующих контроля и управления в реальном времени, ни одна стандартная система SNMP-мониторинга не обеспечит требуемого функционала. Для таких объектов применяют системы управления real-time, построенные на базе программно-аппаратных комплексов сбора данных, в том числе c функциями Softlogic.

    Системы диспетчеризации и управления крупными объектами реализуются SCADA-системами, широкий перечень которых сегодня присутствует на рынке; представлены они и в портфеле решений Schneider Electric. Тип SCADA-системы зависит от класса и размера объекта, от количества его элементов, требующих контроля и управления, от уровня надежности. Частный вид реализации SCADA — это BMS-система(Building Management System).

    «Дата-центры с объемом потребляемой мощности до 1,5 МВт и уровнем надежности Tier I, II и, с оговорками, даже Tier III, могут обслуживаться без дополнительной SCADA-системы, — говорит Олег Письменский. — На таких объектах целесообразно применять ISX Central — программно-аппаратный комплекс, использующий SNMP. Если же категория и мощность однозначно предполагают непрерывность управления, в таких случаях оправданна комбинация SNMP- и SCADA-системы. Например, для машинного зала (White Space) применяется ISX Central с возможными расширениями как Change & Capacity Manager, в комбинации со SCADA-системой, управляющей непосредственно объектом (Grey Space)».

    Профессиональное мнение

    Олег Письменский, директор департамента консалтинга APC by Schneider Electric в России и СНГ

    Подход APC by Schneider Electric к реализации полномасштабного полноуправляемого и надежного ЦОД изначально был основан на базисных принципах управления ИТ-инфраструктурой в рамках концепции ITIL/ITSM. И история развития системы управления инфраструктурой ЦОД ISX Manager, которая затем интегрировалась с программно-аппаратным комплексом NetBotz и трансформировалась в портал диспетчеризации ISX Central, — лучшее тому доказательство.

    Первым итогом поэтапного приближения к намеченной цели стало наращивание функций контроля параметров энергообеспечения. Затем в этот контур подключилась система управления кондиционированием, система контроля параметров окружающей среды. Очередным шагом стало измерение скорости воздуха, влажности, пыли, радиации, интеграция сигналов от камер аудио- и видеонаблюдения, системы управления блоками розеток, завершения работы сервера и т. д.

    Эта система не может и не должна отвечать абсолютно всем принципам ITSM, потому что не все они касаются существа поставленной задачи. Но как только в отношении политик и некоторых тактик управления емкостью и изменениями в ЦОД потребовался соответствующий инструментарий — это нашло отражение в расширении функционала ISX Central, который в настоящее время реализуют ПО APC by Schneider Electric Capacity Manager и APC by Schneider Electric Change Manager. С появлением этих двух решений, интегрированных в систему управления реальным объектом, АРС предоставляет возможность службе эксплуатации оптимально планировать изменения количественного и качественного состава оборудования машинного зала — как на ежедневном оперативном уровне, так и на уровне стратегических задач массовых будущих изменений.

    Решение APC by Schneider Electric Capacity обеспечивает автоматизированную обработку информации о свободных ресурсах инженерной инфраструктуры, реальном потреблении мощности и пространстве в стойках. Обращаясь к серверу ISX Central, системы APC by Schneider Electric Capacity Manager и APC by Schneider Electric Change Manager оценивают степень загрузки ИБП и систем охлаждения InRow, прогнозируют воздействие предполагаемых изменений и предлагают оптимальное место для установки нового или перестановки имеющегося оборудования. Новые решения позволяют, выявив последствия от предполагаемых изменений, правильно спланировать замену оборудования в ЦОД.

    Переход от частного к общему может потребовать интеграции ISX Central в такие, например, порталы управления, как Tivoli или Open View. Возможны и другие сценарии, когда ISX Central вписывается и в SCADA–систему. В этом случае ISX Central выполняет роль диспетчерской настройки, функционал которой распространяется на серверную комнату, но не охватывает целиком периметр объекта.

    Случай из практики

    Решение задачи управления энергообеспечением ЦОД иногда вступает в противоречие с правилами устройств электроустановок (ПУЭ). Может оказаться, что в соответствии с ПУЭ в ряде случаев (например, при компоновке щитов ВРУ) необходимо обеспечить механические блокировки. Однако далеко не всегда это удается сделать. Поэтому такая задача часто требует нетривиального решения.

    — В одном из проектов, — вспоминает Алексей Сарыгин, — где система управления включала большое количество точек со взаимными пересечениями блокировок, требовалось не допустить снижения общей надежности системы. В этом случае мы пришли к осознанному компромиссу, сделали систему полуавтоматической. Там, где это было возможно, присутствовали механические блокировки, за пультом дежурной смены были оставлены функции мониторинга и анализа, куда сводились все данные о положении всех автоматов. Но исполнительную часть вывели на отдельную панель управления уже внутри ВРУ, где были расположены подробные пользовательские инструкции по оперативному переключению. Таким образом мы избавились от излишней автоматизации, но постарались минимизировать потери в надежности и защититься от ошибок персонала.

    [ http://www.computerra.ru/cio/old/products/infrastructure/421312/]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > управление электропитанием

  • 10 измеритель


    indicator
    (индикатор, указатель)
    - вибраций (ив)(engine) vibration indicator
    -, доплеровский (дисс) — doppler navigation system, dopier system, doppler navigator (doppler, dop)
    - крутящего момента (икм)torquemeter

    а device incorporated in an engine for measuring the torque output.
    - крутящего момента (возд. винта) — (propeller) torquemeter
    - отношения давлений (иод) — engine pressure ratio indicator, epr indicator
    - путевой скорости и угла сноса, доплеровский (дисс) — doppler system (doppler, dop)
    использует зависимость частоты отраженного сигнала от скорости источника излучения (эффект доплера) для опредепения путевой скорости и угла сноса (рис. 66). — provides outputs of velocity along and across heading to а navigation computer, агоund speed and drift information is computed and displayed.
    - режимов (ир) — engine pressure ratio indicator (set), epr indicator, epr gau
    состоит из указателя режимов (ур), датчика высотной коррекции (двк), двух приемников давл. (пм) и приеминка температуры (п-1) — the set consists of epr indicater, altitude sensor, two pressure probes and temperature bulb.
    - режимов работы (гтд) — engine pressure ratio indicator, epr indicator
    - тахометраtachometer indicator
    -, топлива (ит, в баках) — fuel quantity indicator
    - (потребляемого) токаloadmeter
    - тягиjet pipe thrustmeter
    прибор, измеряющий давнение газов в реактивном сопле. — the pipe thrustmeter measures turbine discharge or jet pipe pressure.
    - тяги — engine pressure ratio gauge, e.p.r. gauge
    прибор, измеряющий отнощенке давлений в реактивном сопле и на входе в двигатепь. — the e.p.r. gauge measures the ratio of jet pipe pressure to compressor inlet pressure.
    - тяги (регулятора оборотов возд. винта) — (propeller) thrustmeter
    - частоты вращенияtachometer indicator
    - частоты вращения 1 и 2 каскадов компрессора — lp and hp compressor rotor tachometer indicator

    Русско-английский сборник авиационно-технических терминов > измеритель

  • 11 ток потребления при высоком уровне выходного напряжения оптоэлектронного переключателя

    1. current consumption at high-level of output voltage

     

    ток потребления при высоком уровне выходного напряжения оптоэлектронного переключателя
    I1пот
    ICCH
    Значение тока, потребляемого оптоэлектронным переключателем от источника питания при выходном напряжении высокого уровня.
    [ ГОСТ 27299-87]

    Тематики

    Обобщающие термины

    • параметры оптопар, оптоэлектронных коммутаторов и оптоэлектронных переключателей

    EN

    79. Ток потребления при высоком уровне выходного напряжения оптоэлектронного переключателя

    Current consumption at high-level of output voltage

    I1пот

    Значение тока, потребляемого оптоэлектронным переключателем от источника питания при выходном напряжении высокого уровня

    Источник: ГОСТ 27299-87: Приборы полупроводниковые оптоэлектронные. Термины, определения и буквенные обозначения параметров оригинал документа

    Русско-английский словарь нормативно-технической терминологии > ток потребления при высоком уровне выходного напряжения оптоэлектронного переключателя

  • 12 ток потребления при низком уровне выходного напряжения оптоэлектронного переключателя

    1. current consumption at low-level of output voltage

     

    ток потребления при низком уровне выходного напряжения оптоэлектронного переключателя
    I0пот
    ICCL
    Значение тока, потребляемого оптоэлектронным переключателем от источника питания при выходном напряжении низкого уровня.
    [ ГОСТ 27299-87]

    Тематики

    Обобщающие термины

    • параметры оптопар, оптоэлектронных коммутаторов и оптоэлектронных переключателей

    EN

    80. Ток потребления при низком уровне выходного напряжения оптоэлектронного переключателя

    Current consumption at low-level of output voltage

    I0пот

    Значение тока, потребляемого оптоэлектронным переключателем от источника питания при выходном напряжении низкого уровня

    Источник: ГОСТ 27299-87: Приборы полупроводниковые оптоэлектронные. Термины, определения и буквенные обозначения параметров оригинал документа

    Русско-английский словарь нормативно-технической терминологии > ток потребления при низком уровне выходного напряжения оптоэлектронного переключателя

  • 13 начальный пусковой ток

    initial starting current, IA
    Наибольшее действующее значение тока, потребляемого заторможенным электродвигателем переменного тока с короткозамкнутым ротором или магнитом переменного тока, у которого якорь установлен так, что создается максимальный воздушный зазор при номинальных напряжении и частоте.
    Примечание - Переходные процессы не принимают во внимание.

    Русско-английский словарь по электротехнике > начальный пусковой ток

  • 14 начальный пусковой ток

    1. initial starting current

     

    начальный пусковой ток
    Наибольшее действующее значение тока, потребляемого заторможенным электродвигателем переменного тока с короткозамкнутым ротором или магнитом переменного тока, у которого якорь установлен так, что создается максимальный воздушный зазор при номинальных напряжении и частоте.
    Обозначение
    символ IA
    Примечание
    Переходные процессы не принимают во внимание.
    [ ГОСТ Р МЭК 60050-426-2006]

    EN

    initial starting current
    Symbol IA
    highest r.m.s. value of current absorbed by an a.c. motor when at rest or by an a.c. magnet with its armature clamped in the position of maximum air gap when supplied at rated voltage and rated frequency
    NOTE – Transient phenomena are ignored.
    [IEV number 426-08-04]

    FR

    courant initial de démarrage
    valeur efficace la plus élevée du courant absorbé par un moteur à courant alternatif au repos ou par un électro-aimant à courant alternatif dont l’armature est bloquée dans la position donnant l’entrefer maximal lorsqu’il est alimenté à sa tension et à sa fréquence assignées
    NOTE – Les phénomènes transitoires ne sont pas pris en compte.
    [IEV number 426-08-04]


    Тематики

    EN

    DE

    • Anzugstrom, m

    FR

    Русско-английский словарь нормативно-технической терминологии > начальный пусковой ток

  • 15 измерение при прокручивании неработающего двигателя

    Универсальный русско-английский словарь > измерение при прокручивании неработающего двигателя

  • 16 ток при заторможённом роторе

    1. locked-rotor current

     

    ток при заторможённом роторе

    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.]

    Тематики

    • электротехника, основные понятия

    EN

    3.13 ток при заторможенном роторе (locked-rotor current): Наибольшее действующее значение установившегося тока, потребляемого двигателем из сети, измеренное при всех угловых положениях заторможенного ротора, при номинальных значениях напряжения и частоты питания.

    Источник: ГОСТ Р 52776-2007: Машины электрические вращающиеся. Номинальные данные и характеристики оригинал документа

    Русско-английский словарь нормативно-технической терминологии > ток при заторможённом роторе

См. также в других словарях:

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»